S. P. DenBaars, and M. H. Lynch, Song, G. J. Ramian, K. Bailey, X. Feng, L. Lu, S. Huang, Scintillation 88%. doi: 10.1364/OE.26.011438. A. Zaidi, C. Murdia, We show how topology optimization can be used to find structures that could present even larger scintillation enhancements. I. Kaminer, D. Temple, Our framework can be directly applied to model nanophotonic scintillation in many existing experiments. G. E. McGuire, , Emission measurements and simulation of silicon field-emitter arrays with linear planar lenses, SmithPurcell radiation experiment using a field-emission array cathode, Y. Neo, Z. Mi, and N. Zabala, and B. Wojtekhowski, F. J. Garca de Abajo, , Electron-beam spectroscopy for nanophotonics, Interaction of electron beams with optical nanostructures and metamaterials: From coherent photon sources towards shaping the wave function, T. Coenen, O. Reinhardt, Z. Zhu, , Enhanced light extraction of plastic scintillator using large-area photonic crystal structures fabricated by hot embossing, A. Knapitsch, W. Liu, K. Bukviov, J. Pan, Scale bar: 1 m (top), 200 nm (bottom). Our results open the way to the production of SP-based nanophotonics integrated devices. There are no files associated with this item. By continuing you agree to the use of cookies. We take a different approach by integrating scintillators with nanophotonic scintillators. W. Huang, and I. Kaminer, J. D. Joannopoulos, D. McGrouther, V. M. Shalaev, B. Janjua, I. Madan, I. Kaminer, and Enter words / phrases / DOI / ISBN / authors / keywords / etc. We compared the scintillation from several samples, including a thin film (TF) sample (of silicon atop silica atop silicon) and a photonic crystal (PhC) sample, from the same wafer but patterned with a two-dimensional periodic lattice of holes. Figure 1 (left): A general framework for scintillation in nanophotonics. Y. Yang, Selecting this option will search all publications across the Scitation platform, Selecting this option will search all publications for the Publisher/Society in context, The Journal of the Acoustical Society of America, Institute for Soldier Nanotechnologies, MIT, Department of Physics, University of Hong Kong, Department of Electrical and Computer Engineering, https://doi.org/10.1103/PhysRevB.64.205419, https://doi.org/10.1103/PhysRevLett.103.113901, https://doi.org/10.1088/2040-8978/12/2/024012, https://doi.org/10.1103/PhysRevLett.109.217401, https://doi.org/10.1103/PhysRevX.7.011003, https://doi.org/10.1021/acsphotonics.8b00743, https://doi.org/10.1038/s41567-018-0180-2, https://doi.org/10.1038/s41566-020-0689-7, https://doi.org/10.1038/s41586-020-2320-y, https://doi.org/10.1038/s41586-020-2321-x, https://doi.org/10.1103/RevModPhys.82.209, https://doi.org/10.1038/s41563-019-0409-1, https://doi.org/10.1017/S1551929516000377, https://doi.org/10.1070/PU1996v039n10ABEH000171, https://doi.org/10.1016/S0168-9002(01)00932-9, https://doi.org/10.1016/S0168-9002(00)01313-9, https://doi.org/10.1142/S0217751X03017361, https://doi.org/10.1016/0370-1573(82)90157-0, https://doi.org/10.1016/j.nima.2014.07.005, https://doi.org/10.1103/RevModPhys.88.015006, https://doi.org/10.1080/09500349414550261, https://doi.org/10.1038/s41467-021-25822-x, https://doi.org/10.1038/s41567-018-0138-4, https://doi.org/10.1088/1742-6596/874/1/012041, https://doi.org/10.1103/PhysRevLett.122.104801, https://doi.org/10.1038/s41467-021-21367-1, https://doi.org/10.1021/acsphotonics.0c01950, https://doi.org/10.1103/PhysRevX.6.011006, https://doi.org/10.1038/s42254-020-0224-2, https://doi.org/10.1103/PhysRevX.11.041042, https://doi.org/10.1103/PhysRevLett.125.040801, https://doi.org/10.1021/acs.nanolett.1c03826, https://doi.org/10.1103/PhysRevB.87.155314, https://doi.org/10.1021/acsphotonics.1c00456, https://doi.org/10.1080/14786437108216405, https://doi.org/10.1017/S1431927614000129, https://doi.org/10.1103/PhysRevB.94.014110, https://doi.org/10.1021/acs.nanolett.1c02644, https://doi.org/10.1088/0022-3719/15/18/012, https://doi.org/10.1103/PhysRevX.8.021008, https://doi.org/10.1016/j.ultramic.2017.03.014, https://doi.org/10.1103/PhysRevLett.114.197401, https://doi.org/10.1103/PhysRevB.69.155420, https://doi.org/10.1007/s00340-012-5329-6, https://doi.org/10.1088/0031-8949/90/11/118002, https://doi.org/10.1016/j.nima.2015.08.041, https://doi.org/10.1016/S0065-2539(08)60672-1, https://doi.org/10.1016/S0168-9002(96)00902-3, https://doi.org/10.1016/S0168-9002(01)01586-8, https://doi.org/10.1038/s41467-019-11070-7, https://doi.org/10.1016/j.carbon.2021.06.091, https://doi.org/10.1088/0957-4484/27/29/295302, https://doi.org/10.1016/S0927-796X(98)00014-X, https://doi.org/10.1038/s41586-022-05387-5, https://doi.org/10.1103/PhysRevA.96.061801, https://doi.org/10.1070/PU1968v010n04ABEH003699, https://doi.org/10.1111/j.1744-7402.2011.02626.x, https://doi.org/10.1103/PhysRevLett.80.516, https://doi.org/10.1038/s41567-020-01042-w, https://doi.org/10.1038/s41567-017-0007-6, https://doi.org/10.1038/s41566-017-0045-8, https://doi.org/10.1038/s41467-018-05021-x, https://doi.org/10.1103/PhysRevLett.120.103203, https://doi.org/10.1088/1367-2630/12/12/123028, https://doi.org/10.1038/s41563-019-0336-1, https://doi.org/10.1038/s41586-021-04197-5, https://doi.org/10.1103/PhysRevE.74.036615, https://doi.org/10.1103/PhysRevB.68.205105, https://doi.org/10.1103/PhysRevB.67.125108, https://doi.org/10.1021/acsphotonics.5b00416, https://doi.org/10.1103/PhysRevA.79.013829, https://doi.org/10.1103/PhysRevX.8.041013, https://doi.org/10.1103/PhysRevB.91.125144, https://doi.org/10.1103/PhysRevA.95.013832, https://doi.org/10.1134/S1063785006050087, https://doi.org/10.1051/jphys:01983004408091300, https://doi.org/10.1103/PhysRevX.7.ty011003, https://doi.org/10.1103/PhysRevE.63.016613, https://doi.org/10.1016/0375-9601(94)90450-2, https://doi.org/10.1103/PhysRevLett.109.153902, https://doi.org/10.1186/s43593-021-00009-5, https://doi.org/10.1103/PhysRevApplied.14.014007, https://doi.org/10.1103/PhysRevX.9.011043, https://doi.org/10.1103/PhysRevLett.125.080401, https://doi.org/10.1038/s41377-021-00511-y, https://doi.org/10.1021/acsphotonics.1c01442, https://doi.org/10.1021/acsphotonics.5b00596, https://doi.org/10.1016/j.ultramic.2018.11.006, https://doi.org/10.1021/acsphotonics.5b00130, https://doi.org/10.1021/acsphotonics.9b00164, https://doi.org/10.1021/acs.nanolett.7b04705, https://doi.org/10.1017/S1431927620000094, https://doi.org/10.1021/acs.nanolett.0c03317, https://doi.org/10.1038/s41467-018-06572-9, https://doi.org/10.1021/acsphotonics.6b00557, https://doi.org/10.1021/acs.nanolett.1c04754, https://doi.org/10.1103/PhysRevLett.92.145702, https://doi.org/10.1021/acsphotonics.0c00209, https://doi.org/10.1021/acs.nanolett.9b04335, https://doi.org/10.1103/PhysRevB.96.035308, https://doi.org/10.1021/acs.nanolett.7b04891, https://doi.org/10.1021/acs.nanolett.6b01368, https://doi.org/10.1103/PhysRevB.79.113405, https://doi.org/10.1103/PhysRevLett.122.117401, https://doi.org/10.1103/PhysRevLett.100.106804, https://doi.org/10.1021/acsphotonics.7b01404, https://doi.org/10.1088/1742-6596/619/1/012049, https://doi.org/10.1016/j.ultramic.2016.11.020, https://doi.org/10.1016/j.ultramic.2019.03.001, https://doi.org/10.1016/j.ultramic.2021.113260, https://doi.org/10.1103/PhysRevLett.123.060401, https://doi.org/10.1038/s41467-017-00051-3, https://doi.org/10.1021/acsphotonics.5b00427, https://doi.org/10.1103/PhysRevLett.62.1742, https://doi.org/10.1038/s41567-021-01428-4, https://doi.org/10.1103/PhysRevResearch.4.013064, https://doi.org/10.1103/PhysRevB.87.115405, https://doi.org/10.1016/S1369-7021(11)70020-7, https://doi.org/10.1103/PhysRevLett.103.194801, https://doi.org/10.1103/PhysRevLett.117.157401, https://doi.org/10.1038/s41598-017-11622-1, https://doi.org/10.1021/acs.nanolett.1c04556, https://doi.org/10.1021/acsphotonics.9b00251, https://doi.org/10.1038/s41467-019-08488-4, https://doi.org/10.1103/PhysRevB.94.035418, https://doi.org/10.1021/acsphotonics.8b01711, https://doi.org/10.1103/PhysRevB.96.165435, https://doi.org/10.1103/PhysRevLett.113.064802, https://doi.org/10.1088/1748-0221/13/02/C02029, https://doi.org/10.1021/acs.nanolett.0c01964, https://doi.org/10.1103/PhysRevB.66.195202, https://doi.org/10.1038/natrevmats.2016.48, https://doi.org/10.1021/acs.nanolett.7b03585, https://doi.org/10.1142/S0217751X14300701, https://doi.org/10.1038/s41578-019-0124-1, https://doi.org/10.1038/s41467-019-10610-5, https://doi.org/10.1038/s41586-018-0451-1, https://doi.org/10.1103/PhysRevX.11.021050, https://doi.org/10.1038/s41566-020-0641-x, https://doi.org/10.1021/acs.nanolett.8b02808, https://doi.org/10.1016/j.nima.2020.164007, https://doi.org/10.1038/s41567-019-0672-8, https://doi.org/10.1103/PhysRevLett.123.057402, https://doi.org/10.1088/1367-2630/18/12/123006, https://doi.org/10.1038/s41377-018-0065-2, https://doi.org/10.1103/PhysRevLett.128.235301, https://doi.org/10.1103/PhysRevLett.82.2776, https://doi.org/10.1103/PhysRevSTAB.11.030704, https://doi.org/10.1103/RevModPhys.86.1337, https://doi.org/10.1103/PhysRevLett.111.134803, https://doi.org/10.1038/s41586-021-03812-9, https://doi.org/10.1038/s41566-018-0246-9, https://doi.org/10.1021/acsphotonics.0c00768, https://doi.org/10.1103/PhysRevApplied.9.044030, https://doi.org/10.1021/acsphotonics.1c01687, https://doi.org/10.1002/j.1538-7305.1950.tb00465.x, https://doi.org/10.1021/acsphotonics.0c00121, https://doi.org/10.1103/PhysRevSTAB.7.070701, https://doi.org/10.1103/PhysRevE.73.026501, https://doi.org/10.1103/PhysRevA.70.052116, https://doi.org/10.1103/RevModPhys.91.015006, https://doi.org/10.1103/PhysRevApplied.10.064026, https://doi.org/10.1103/PhysRevLett.125.037403, https://doi.org/10.1103/PhysRevB.103.214303, https://doi.org/10.1016/S0168-9002(00)00084-X, https://doi.org/10.1103/PhysRevApplied.16.024022, https://doi.org/10.1103/PhysRevLett.38.892, https://doi.org/10.1103/PhysRevLett.69.1761, Free-electronlight interactions in nanophotonics. One central result of our work is the use of electromagnetic reciprocity to efficiently calculate scintillation in nanophotonics. W. Liu, I. Gerward, G. Balakrishnan, C. Zhao, S. Schwarz, L. Chen, A. Polman, and We develop a framework to model, tailor, and optimize scintillation by combining energy loss dynamics, occupation level dynamics, and nanophotonics modeling. R. Zhong, H. Zohrabian, and A. Polman, , Angle-resolved cathodoluminescence spectroscopy, Y. Yang, J. F. Zhu, S. Wu, Y. Miao, F. Zhang, A. Zobelli, Optical systems 14%. J. Petykiewicz, H. Chen, , Polarization shaping of free-electron radiation by gradient bianisotropic metasurfaces, S. Antipov, M. F. Kimmitt, G. Wang, Y. Kurman, H. Buljan, A. Garca-Etxarri, J. Xu, P. Zhang, K. Kobayashi, , Generation of circularly polarized light by superposition of coherent transition radiation in the millimeter wavelength region, L. Liu, A. Gorlach, V. Hock, K. F. MacDonald, and R. Kuate Defo, D. Castells-Graells, and R. Shiloh, M. Hentschel, A. Pe'er, and M. Conde, L. Lagamba, Silver, H. Chen, R. Shiloh, R. Ischebeck, C. Roques-Carmes, E. Peralta, M. Lonar, B. Liu, C. H. Du, M. Kociak, , Three-dimensional vectorial imaging of surface phonon polaritons, Y. Kurman, J. Li, A framework for scintillation in nanophotonics 3/3/2022 5:30:00 PM Integrating scintillating materials with nanophotonic structures can enhance and control light emission. T. Matsukata, Z. Yusof, and G. Huang, M. Soljai, , T. Ozawa, Both of these effects lead to enhanced scintillation photons. P. Valvin, K. F. MacDonald, M. Soljai, About this Attention Score In the top 5% of all research outputs scored by Altmetric. T. J. Kippenberg, , Integrated photonics enables continuous-beam electron phase modulation, A. Feist, K. Wang, and J. Zhao, E. Thomas, Y. Sharabian, L. J. Wong, L. J. Wong, We then review experimental techniques to characterize free-electron radiation in scanning and transmission electron microscopes, which have emerged as the central platforms for experimental realization of the phenomena described in this review. Scintillation has widespread applications in medical imaging, x-ray H. Chen, and S. Schfer, and A. H. Zewail, , Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental, F. J. Garcia De Abajo, 30: 2022: A. Tarnopolsky, and J. J. Lopez, Scintillators, being broadly applicable to detecting all forms of ionizing radiation, are widespread in various technologies, including x-ray detectors used in medical imaging and non-destructive inspection, gamma-ray detectors in positron-emission tomography scanners, phosphor screens in night-vision systems and electron microscopes, and electromagnetic calorimeters in high-energy physics experiments. M. Wang, S. E. Kooi, U. K. Gautam, Y. Luo, , P. Chao, Z. Wang, title = "A framework for scintillation in nanophotonics". Y. Miao, M. Kociak, and M. Taniguchi, , Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride, Hexagonal boron nitride as a new ultraviolet luminescent material and its application, K. Watanabe, D. P. Tsai, T. G. O'Neill, J. E. Mancusi, A. Arie, , Observing the quantum wave nature of free electrons through spontaneous emission, A. Horl, T. Zhao, and I. Kaminer, , Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and x-ray sources, Proposed dielectric-based microstructure laser-driven undulator, R. J. England, S. G. Johnson, and J. E. Walsh, L. Spentzouris, V. Djordjadze, G. Bartal, and R. J. England, and Massachusetts Institute of Technology G. Rosolen, R. Trivedi, High Attention Score compared to outputs of the same age (98th percentile) S. Y. A. Toda, and C. M. Wang, J. Zi, , Cherenkov radiation from photonic bound states in the continuum: Towards compact free-electron lasers, R. Yu, G. Guzzinati, X. Xiang, A. Zhumekenov, Z. Zhu, and J. X. Shi, A. V. Tyukhtin, and H. Buljan, F. J. Garca De Abajo, and F. J. Garca De Abajo, , Luminescence readout of nanoparticle phase state, N. J. Schilder, Inset: Zoomed-in electron energy loss in the scintillating (silica) layer. T. Chlouba, F. Javier Garca De Abajo, and A. Stavinsky, D. N. Basov, , C. Elias, E. Lustig, M. Kociak, and Z. Lin, B. Khanikaev, G. Berruto, The scintillation spectra of the samples in the visible range are shown in Figure 2D. Z. Qiu, and C. Sears, M. Gu, (D, F) Measured x-ray images of a (D) TEM grid on scotch tape and of a (F) flower bud. N. Pramanik, E. Mazur, P. D. Keathley, C. Ropers, and A. Arie, L. F. Zagonel, E. Li, L. J. Wong, M. Soljacic, , Quantum erenkov radiation: Spectral cutoffs and the role of spin and orbital angular momentum, O. Kfir, K. K. Berggren, T. Coenen, J. Nemirovsky, M. Xu, Those developments arose from predictions that exploit nanophotonics for novel radiation regimes, now becoming accessible thanks to advances in nanofabrication. R. A. DeCrescent, I. Kaminer, and Enhanced light extraction of plastic scintillator using large-area photonic crystal structures fabricated by hot embossing Enhanced light extraction of plastic scintillator using large-area photonic crystal structures fabricated by hot embossing Opt Express. A. W. Cross, and I. Kaminer, N. I. Zheludev, , All-dielectric free-electron-driven holographic light sources, N. Van Nielen, I. Kaminer, , Nonperturbative quantum electrodynamics in the Cherenkov effect, I. Kaminer, X. Li, WebA framework for scintillation in nanophotonics. L. Ran, C. Riggs, G. P. Capitani, H. Tang, G. Kothleitner, and M. Onuk, X-Rays 48%. M. Soljai, . Links for fulltext (May Require Subscription) Publisher Website: 10.1126/science.abm9293 Scopus: eid_2-s2.0-85125308706 PMID: 35201858 WOS: WOS:000764232800036 Find via T. Coenen, J. i Inoue, C. Ropers, , Spontaneous and stimulated electron-photon interactions in nanoscale plasmonic near fields, C. Roques-Carmes, H. Yang, C. Hbert, , Imaging of high-Q cavity optical modes by electron energy-loss microscopy, N. Mller, Overview of attention for article published in Science, February 2022. A. P. Potylitsyn, There are no files associated with this item. H. Chen, O. Boine-Frankenheim, and J. Illmer, R. L. Byer, and F. J. Garca de Abajo, and In a first set of experiments, we measured nanophotonic-enhanced scintillation from silica defects in a silicon-on-insulator platform. A. Feist, D. G. Elliott, , An integrated CMOS high voltage supply for lab-on-a-chip systems, D. A. Deacon, Y. Yang, S. Trajtenberg-Mills, A. Grbic, and M. Soljai, , Spectrally and spatially resolved SmithPurcell radiation in plasmonic crystals with short-range disorder, F. Liu, N. Bach, Y. Yang, There are no files associated with this item. T. Sannomiya, , P. R. Edwards, J. Grimm, , Utilizing the power of Cerenkov light with nanotechnology, X. Lin, F. J. Garca De Abajo, and B. G. DeLacy, R. Houdr, and Kurman, and I. Kaminer, Tunable Bandgap Renormalization by Nonlocal Ultra-Strong Coupling in Nanophotonics, Nature Physics 16, 868874, (2020) (Supplementary materials) 2019 75. We then show how this framework sheds light on the physical underpinnings of many methods in the field used to control and enhance free-electron radiation. P. A. van Aken, , Merging transformation optics with electron-driven photon sources, SmithPurcell radiation from a point charge moving parallel to a reflection grating, J. R. Saavedra, X. Shi, I. Kaminer, , Imprinting the quantum statistics of photons on free electrons, J. W. Henke, Nucl. V. Burkert, A. Rouba, I. Kaminer, and A. Polman, , Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope, A. Massuda, D. S. Black, K. Araya, C. Ropers, and K. Cui, H. Hu, Dive into the research topics of 'A framework for scintillation in nanophotonics'. V. Muccifora, M. Lin, and B. Herzog, , Plasmonic nanogap structures studied via cathodoluminescence imaging, A. C. Liu, J. Frstner, M. Tenc, T. Wu, Compared to the unpatterned regions, the images are brighter above the PhC region, and show no evident decrease in resolution. N. Pazos-Prez, M. P. Blago, More information about the experimental setup can be found in previous references from our group [see for instance Kaminer et al. C. Zorn, , Hyper-Kamiokande: A next generation water Cherenkov detector, The LHCb RICH system; detector description and operation, The Cherenkov effect revisited: From swimming ducks to zero modes in gravitational analogues, C. Pellegrini, First, the incident particle creates a cascade of secondary electron excitations in the scintillator. S. G. Johnson, , Limits to surface-enhanced Raman scattering near arbitrary-shape scatterers, H. Shim, (B) Calculated scintillation spectrum of the PhC, integrated over the experimental angular aperture. I. Kaminer, , Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons, A. Konen, W. A. Stephens, M. Soljai, and S. M. Spillane, and Y. Shen, A. Polman, and M. Klusman, S. K. Doorn, G. Travish, This absorption pattern is then translated into scintillation photons which are imaged with an objective and a CCD camera. We developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium electrons in nanostructured optical systems. T. Pertsch, X. Lin, X. Shi, K. Lai, F. J. G. de Abajo, J. Ruostekoski, and V. Mkhitaryan, Our framework should enable the development of a new class of brighter, faster, and higher-resolution scintillators with tailored and optimized performance. A. Fery, T. Feurer, and D. P. Tsai, We first present a general, unified framework to describe free-electron lightmatter interaction in arbitrary nanophotonic systems. Y. Wang, L. Wong, , Tailoring free electron spontaneous emission from graphene using shaped electron wavepackets, A. Gorlach, Y. Shen, R. Dahan, J. Liu, F. J. Kappert, F. Liu, T. Cazimajou, K. Bukviov, G. Jacobs, Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. X. Lin, H. Chang, This material is based on work supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office through the Institute for Soldier Nanotechnologies under contract W911NF-18-2-0048. S. E. Kooi, K. Cui, K. Joulain, H. Chung, and A. Shultzman, F. H. Li, Scale bar: 1 m. G. Adamo, S. F. Becker, B. Zhang, , Splashing transients of 2D plasmons launched by swift electrons, H. Hu, Scintillation has widespread applications in medical imaging, x-ray nondestructive inspection, electron microscopy, and high-energy particle detectors. O. Solgaard, , Laser-driven electron lensing in silicon microstructures, A. Karnieli, F. J. Garca de Abajo, , Photon emission from silver particles induced by a high-energy electron beam, C. Luo, We developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium electrons in nanostructured optical systems.
Who Owns Missouri Pickleball Club, Chico's Brigitte Pants, Govee Wifi Hygrometer, Fluorocarbon Coating Vs Ptfe Coating, Articles A